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Executive Summary 

Trajectories and CAMX modeling demonstrate that smoke from wildfires in Arizona and New 

Mexico was transported to El Paso Texas on June 21, 2015.   The CAMx modeled arrival time 

coincides nearly exactly with the time of enhanced PM and ozone (O3) at the University of Texas 

at El Paso (UTEP) monitoring site.  The PM and O3 peaks, which appear on June 21, 2015 

between 10 am and 2 pm, are present in a ratio that is consistent with published observations of 

O3 in aged wildfire plumes.  The observed MDA8 on this date was 77 ppb. We used a 

Generalized Additive Model to estimate the contribution from the fires to the 8-hour O3 

concentration for the UTEP site for June 21, 2015.   Our best estimate of the wildfire 

contribution to the MDA8 on this day is 23 ppb.  Applying a 97.5th percentile error bounds based 

on the EPA guidance method, we calculate a minimum contribution due to the wildfires of 7 ppb 

to the MDA8. 

 

1. Introduction  

This report supplements the information in the TCEQ “EXCEPTIONAL EVENT 

DEMONSTRATION PACKAGE For the El Paso County Maintenance Area” and the CAMx 

modeling package, completed by Ramboll-Environ in February 2017.  Combined, the TCEQ and 

Ramboll-Environ documents show clear evidence of wildfire smoke transport to the El Paso 

UTEP monitoring site on June 21, 2015.   In particular, the CAMx modeling shows enhanced 

smoke from the fires at exactly the time when PM and O3 are enhanced in El Paso on June 21, 

2015.  In this report, we demonstrate that the PM and O3 enhancement ratios are consistent 

with an aged wildfire source.  We use a statistical modeling approach to estimate a wildfire 

contribution to the MDA8 on June 21, 2015 of 23 ppb. . .  We further calculate a minimum 

contribution of  7 ppb   based on the “error bounds” from the EPA guidance document on 

wildfire exceptional events.   

 

2. Introduction to using statistical models for Exceptional Event (EE) analysis 

A number of methods have been used to investigate the impacts of meteorological 

variables on O3 concentrations.   Camalier (2007) summarizes prior studies on this and 
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developed an approach using Generalized Linear Models.  In a project for TCEQ, Alvarado et al 

(2015) used Generalized Additive Models (GAMs) to investigate the relationship between O3 

and meteorology for 6 six cities in Texas.   Jaffe et al (2003) was the first to use the “residual” 

approach to quantify the amount of O3 due to wildfires.   This approach was further developed 

and compared against Eulerian models in Jaffe et al (2013).   The California Air Resources 

Board applied this method in a successful exceptional events case demonstration for 2008 

California wildfires (CARB 2011), and EPA cited this element in its approval documentation 

(April 13, 2011).   The CARB analysis did not apply the stringent error bound requirements 

(described below), but was accepted in any case.  The approach taken for the present analysis 

builds on the knowledge from these prior studies.  

It is important to note that a statistical model uses observations to identify the usual 

relationships between O3 and meteorology.   High residuals, the difference between the model 

prediction and the observation, suggest an unusual or additional source of O3.  However, a 

statistical model alone cannot identify the cause for a high residual.   Possible causes for a 

significant residual include unusual emissions (e.g. an industrial upset), a stratospheric intrusion 

or a contribution from a wildfire.   

EPA cites the use of statistical regression models in “Guidance on the Preparation of 

Exceptional Events Demonstration for Wildfire Events that May Influence Ozone 

Concentrations,” dated September 15, 2016, as one of three methods to show that wildfire 

emissions caused an O3 exceedance, stating, “the difference between the predictions and 

observations can provide a reasonable estimate of the air pollution caused by event-related 

emissions (e.g., emissions from wildfires) provided the analysis accounts for the typical 

remaining variance of typical days (variability in monitored data not predicted by the model).” 

(pages 27-28).   Our analysis is consistent with the EPA guidance in all respects. 

We note that the EPA guidance document also discusses an analysis called “Q/D” (source 

emissions divided by distance from the fire).    We choose not to apply this method as it appears 

inconsistent with peer reviewed scientific analyses that clearly demonstrate that for most wildfire 

plumes, O3 concentrations increase with distance from the fire (Jaffe and Wigder 2012).  It is 

also largely based on Eulerian modeling, which is known to have significant challenges in 

accurately modeling wildfire plumes (e.g. Baker et al 2016). 
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3. Observations of fire and smoke on June 20 and 21, 2015 

The NOAA Hazard Mapping System (HMS)- Fire and Smoke Product (FSP) for June 20 

and 21, 2015 are shown in Figure 1.   The HMS product indicates “smoke” in three qualitative 

ranges of light, medium and heavy.   Light smoke is estimated to be in the range of 5-16 µg/m3 

(Brey and Fischer 2016).   Note that the HMS products are usually only available once per day, 

at irregular intervals, so the exact location of the smoke plume at any other point during the day 

is uncertain.  The HMS-FSP can also be obscured by clouds or dust.   A narrow or rapidly 

moving smoke plume is not likely to be depicted accurately by the HMS product.   Nonetheless, 

the HMS-FSP shows substantial transport of smoke to the south and east of these fires on June 

20 and 21, consistent with trajectories presented in the original exceptional event documentation.   

The trajectories indicate transport times of more than one day, depending on which fire is most 

important.   

 

 

Figure 1. NOAA Hazard Mapping System (HMS)-Fire and Smoke Product for June 20 and 21, 

2015 

 

4. Overview of observations on June 21, 2015 

Hourly O3 and PM data for June 21, 2015 are shown in Figure 2.   Also shown in Figure 2 is the 

average diurnal cycle for June and July 2015, combined.  The typical pattern for O3 is a slow 

daytime buildup, peaking around 2 pm (1400), whereas PM usually peaks at night.  During the 
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daytime, PM usually reaches its minimum values due to a rising boundary layer.  However, on 

June 21, 2015, the pattern is rather different for both PM and O3 with a rapid rise starting at 10 

am.  On this day, both PM and O3 peak at 12 noon.    The O3 rise between 10 am and 12 noon is 

46 ppb, which is too fast to be explained by a typical urban photochemical buildup.   For 

example median O3 production rates for Houston were only 10 ppb per hour for September 2013 

(Mazucca et al 2016). The rapid increase of both PM and O3 are suggestive of a narrow plume 

that swept thru the region.   By 2 pm, near the time when O3 usually peaks, it has rapidly 

declined, as did PM.  Between the hours of 11 and 6pm, there is an excellent correlation between 

O3 and PM2.5, with a slope of 6.1 and an R2 = 0.96.   We also note that TCEQ has reported no 

evidence for unusual emissions in the El Paso region for this date (personal communication from 

Erik Gribbin, Technical Specialist, TCEQ, May 15, 2017). 

 

 

Figure 2.   Hourly O3 and PM2.5 data for June 21, 2015 for the UTEP monitor along with averaged 

hourly data for all days in June and July, 2015 (O3-JJ avg and PM2.5-JJ avg).    

 

Using the hourly data, we can estimate the consistency between the PM and O3 levels.   

To do this, we calculate ΔPM and ΔO3 value as the difference between the June-July, 2015 

monthly average for each hour and the observations on June 21, 2015.   Figure 3 shows a 

graphical representation of this method.   From this we get ΔPM and ΔO3 values of 8.6 µg/m3 

and 41.4 ppb, respectively, at noon when the plume passed over.   This gives an enhancement 

ratio of 4.8 ppb of O3 per µg/m3 of PM2.5.     
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Figure 3.   Hourly O3 and PM2.5 data for June 21, 2015 for the UTEP monitor along with averaged 

hourly data for all days in June and July, 2015 (O3-JJ avg and PM2.5-JJ avg). This is the same as 

Figure 2, with the addition of arrows representing the calculated ΔPM2.5 (brown arrow) and ΔO3 

(red arrow) values.  The enhanced PM2.5 and O3 values (ΔPM and ΔO3) for June 21 at noon are 8.6 

µg/m3 and 41.4 ppb, respectively, leading to an ΔO3/ΔPM2.5 enhancement ratio of 4.8 ppb of O3 per 

µg/m3 of PM2.5.     

 

We can compare this value to literature values for aged wildfire plumes and under the 

assumption that PM has not been lost during transit (e.g. clouds or precipitation).  Note that the 

chemistry of O3 production in a wildfire is highly complex and depends on many factors 

including emissions, processing and photochemistry.  It is important to recognize that generally 

PM will decrease with distance from a fire, while O3 will increase (Jaffe and Wigder 2012).  So 

we do not expect a simple linear relationship between O3 and PM.    Nonetheless we can 

compare our PM-O3 relationship to what is seen in the literature for wildfire plumes transported 

more than one day.  In many cases, previous studies report ΔPM2.5/ΔCO and/or ΔO3/ΔCO from 

wildfire smoke plumes.  Therefore we can estimate the ΔO3/ΔPM2.5 ratio from the following 

relationship: 

∆𝑶𝟑

∆𝑷𝑴
=∗

∆𝑶𝟑

∆𝑪𝑶
∗

∆𝑪𝑶

∆𝑷𝑴
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Laing et al (2017) reports on the PM to CO relationship for 25 wildfire events as seen in 

8 urban locations in the Western U.S.  They report an average ΔPM2.5/ΔCO ratio in wildfire 

smoke of 0.13 µg/m3 per ppb of CO with a range of 0.06-0.23, relatively consistent with the 

emission factors reported by Akagi et al (2011), which are in the range of 0.10 to 0.20 µg/m3 per 

ppb.  These correspond to ΔCO/ ΔPM2.5 ratios of 7.7, 16.7 and 4.3 ppb/µg/m3, respectively.  

This paper, although still in review for publication in a peer-reviewed journal, has been requested 

by EPA for inclusion in a  technical support document (A.Mebust, U.S. EPA Region 9, Air 

Quality Analysis Office, personal communication, March 30, 2017). 

For ΔO3/ΔCO, we use a published review of more than 100 peer reviewed studies on 

wildfire smoke.   Jaffe and Wigder (2012) report mean ΔO3/ΔCO ratios for sub-tropical wildfire 

plumes aged 2-5 days of 0.35 ppb/ppb, with a range of 0.26-0.42 ppb/ppb.   Thus we can 

calculate a mean, maximum and minimum value for the ΔPM/ΔO3 enhancement ratio for 

wildfire plumes aged 2-5 days: 

Mean value: 

∆𝑶𝟑

∆𝑷𝑴
= 𝟎. 𝟑𝟓 ∗ 𝟕. 𝟕 =  𝟐. 𝟕 

𝒑𝒑𝒃

𝒖𝒈 𝒑𝒆𝒓 𝒎𝟑
 

Maximum value: 

∆𝑶𝟑

∆𝑷𝑴
= 𝟎. 𝟒𝟐 ∗ 𝟏𝟔. 𝟕 =  𝟕. 𝟎 

𝒑𝒑𝒃

𝒖𝒈 𝒑𝒆𝒓 𝒎𝟑
 

 

  Minimum value: 

∆𝑶𝟑

∆𝑷𝑴
= 𝟎. 𝟐𝟔 ∗ 𝟒. 𝟑 =  𝟏. 𝟏 

𝒑𝒑𝒃

𝒖𝒈 𝒑𝒆𝒓 𝒎𝟑
 

 

The June 21, 2015 enhancement ratio ΔO3/ΔPM2.5 enhancement ratio, 4.8 ppb of O3 per µg/m3 of 

PM2.5, fits into the middle the range based on previously published data.  

So, in summary, the observations indicate a rapid increase in both PM2.5 and O3 at 10 am 

on June 21, 2015 at the same time as the CAMx model shows transport of emissions from the 

wildfires.  The timing of the CAMx modeling coincides nearly exactly with the time of enhanced 

PM2.5 and O3 in El Paso.  The rate of increase in O3 and PM2.5 is inconsistent with typical urban 
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photochemistry, but clearly indicates the presence of a narrow plume of PM and O3 that came 

thru El Paso.  The ΔO3/ΔPM2.5 enhancement ratio of 4.8 ppb of O3 per µg/m3 of PM2.5 is 

consistent with published studies indicating a range of 1.1-7.0 ppb O3 per µg/m3 of PM2.5 for 

wildfire smoke plumes that have been transported 2-5 days.  We next turn to a quantification of 

the wildfire effects on O3.   

As a further examination of the PM-O3 relationship on June 21, 2015, we evaluated this 

relationship for every day in 2010-2015 with an MDA8 greater than 70 ppb.  Out of these 30 

days, June 21, 2015 is the only day with a statistically significant positive correlation between 

PM and O3 (shown in Table A1).  This further confirms the importance of smoke on June 21, 

2015. 

 

5. Contributions from fires to the MDA8 on June 21, 2015 using a Generalized Additive 

Model 

To calculate the contribution from the fires to the MDA8, we developed a Generalized 

Additive Model for hourly O3 concentrations for the El Paso UTEP site.  The model used hourly 

O3 data from June-July 2010-2015.   For the final model, we used meteorological data from the 

National Climate Data Center (NCDC) and back-trajectories calculated using the NOAA Hysplit 

model at an arrival height of 500 meter above ground level.    We note that using NCDC data is 

consistent with EPA practices.  We also examined meteorological data from the EPA 

AirnowTech site, but found that it gave no improvement in the results, compared to the NCDC 

met data.  we modeled the hourly O3 concentration using the GAM “mgcv” package in R 

software.  We initially examined 81 daily variables including day of year, weekday/weekend, 

Hysplit back trajectory variables and meteorological variables.  Because many of the variables 

overlap and some have large amounts of missing data, we reduced this list to a much smaller 

number of variables to build the El Paso GAM model.  Also, modeling of the hourly data limited 

the numbers of variables that could be incorporated in a reasonable amount of computational 

time.  A few additional variables were excluded as they did not have data for June 21, 2015.    

The final/best model was developed from 15 numerical variables and 3 categorical variables.   

Table 1 shows the list of final variables used in the model. 

Each parameter was fit with a spline function to incorporate its influence on O3 into the 

model.   The final model results were evaluated based on the Akaike Information Criterion 
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(AIC), the overall model fit (R2), by evaluating the relationship of the residuals to individual 

variables and the statistical significance of each individual parameter.   The AIC is a widely used 

evaluation tool for GAM (Wood 2006) that considers not only the model fit, but also the 

possibility of over-fitting by inclusion of additional predictors that have minimal effect on the 

model.   In general, the model with the lowest AIC is preferred (Wood 2006; Alvarado 2015).   

We found that a log-link with a Gaussian error functions gave the best results (best R2 and lowest 

residuals), similar to the results of Camalier et al (2007). 

 

Table 1.   Parameters used in the General Additive Model for El Paso O3 data. 

Variable Description Source 

Type  

C or N1 

Variable 

name 

TR16Q See below2 

NOAA  

Hysplit  C TR16Q 

Month Month Month C Month 

WD1017 Vector averaged wind direction for Hrs 0-17 NCDC C WD1017 

Year Year Year N V1 

DOY Day of Year Day of Year N V2 

TR16D See below3 

NOAA  

Hysplit N V3 

Hr Hour of day Hour of day N V4 

TMAX Daily max temperature NCDC N V5 

TAVG Daily average temperature NCDC N V6 

TMIN_PREV_Night Min temperature previous night NCDC N V7 

DPAVG Daily average dew point NCDC N V8 

DPMAX017 Daily maximum dew point for hours 0-17 NCDC N V9 

DPMIN017 Daily minimum dew point for hours 0-17 NCDC N V10 

SLPAVG Daily average sea level pressure NCDC N V11 

SLP017 Daily average sea level pressure for hours 0-17 NCDC N V12 

WS017 Vector averaged wind speed for Hrs 0-17 NCDC N V13 

WS617 Vector averaged wind speed for Hrs 6-17 NCDC N V14 

WS1017 Vector averaged wind speed for Hrs 10-17 NCDC N V15 
1C denotes categorical variables, N denotes numerical variables. 

2 TR16Q represents the Hysplit backward trajectory quadrant after  24 hour travel for trajectory initialized 

at 16 GMT (1000 LT).   Trajectories arriving at 20 GMT were also evaluated, but gave weaker results. 

3 TR16D represents the Hysplit backward trajectory 24 hour distance from starting point for trajectory 

initialized at 16 GMT (1000 LT).  Trajectories arriving at 20 GMT were also evaluated, but found to give 

weaker results. 
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Figure 4 shows a comparison of the observed hourly and modeled O3 data.  The R2 is 

0.64, with a slope of 1.004 and an intercept of -0.12.     At low values, there is a slight over-

prediction, but this generally goes away at higher values.  This is further demonstrated in Figures 

5 and 6.  Figure 4 also shows the data point for noon on June 21st, 2015.  This point is more than 

40 ppb from the fit line.  Figure 5 shows a histogram of the model residuals.  The mean is near 

zero (-0.02 ppb) and the standard deviation is 9.2 ppb.   Figure 6 shows the model residual as a 

function of the model prediction. The model predictions are shown in 10 ppb bins.  Each bin has 

a mean near zero, with the exception of the 10 ppb bin, which has only 6 data points.   

 

 

Figure 4.  GAM modeled vs  observed hourly O3.    A linear regression fit (orange line) between the 

modeled and observed values yields an R2  = 0.64, a slope of  1.004 and an  intercept  of -0.12.  The 

data points for June 21, 2015 at 11am – 2pm are highlighted in red.  Note that two points overlap 

(12 noon and 1 pm) as indicated by the larger marker. 

 

June 21, 2015 

12 noon and 1 pm 
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Figure 5.  Histogram of the model residuals.  The mean residual is -0.02 ppb and the standard 

deviation is 9.2 ppb.  The figure includes 8047 data points. 

 

 

Figure 6.   Mean model residual (±1 sd) binned by the model prediction in 10 ppb increments.  The 

bins are centered on 10, 20, 30, 40, 50, 60, 70 and 80 ppb.  So, for example, the 60 ppb bin, includes 

all model predictions between 55-65 ppb.   The numbers to the left of each bar indicate the number 

of data points in that bin.  For June 21, 2015 at noon, the model predicts a value of 56 ppb, whereas 

the observed value was 97 ppb.   This yields a residual O3 amount of 41 ppb in the hourly average.  

This residual is more than 4 standard deviations away from the mean.   



11 

 

 

The model residual can be further characterized by its percentile distributions.  Table 2 

shows the percentile cut-points for all residuals (left side of table) and only the positive residuals 

right side. 

 

Table 2.   Percentile distributions points for residuals of GAM fits.  The left 3 columns give the 

percentiles for all residuals and the right 2 columns give the percentiles for only the positive 

residuals.  Note that the 97.5th percentile of all residuals is equivalent to the 95th percentile of the 

positive residuals.   

Cut point for all residuals  Cut point for positive residuals only 

Percentile Value Percentile Value *** Percentile Value 

2.5 -19.2 52.5 0.5 *** 5 0.5 

5 -15.1 55 1.0 *** 10 1.0 

7.5 -12.9 57.5 1.5 *** 15 1.5 

10 -11.0 60 2.0 *** 20 2.0 

12.5 -9.7 62.5 2.5 *** 25 2.5 

15 -8.7 65 3.1 *** 30 3.0 

17.5 -7.8 67.5 3.6 *** 35 3.6 

20 -6.9 70 4.2 *** 40 4.1 

22.5 -6.2 72.5 4.9 *** 45 4.9 

25 -5.6 75 5.7 *** 50 5.6 

27.5 -4.8 77.5 6.5 *** 55 6.5 

30 -4.2 80 7.3 *** 60 7.3 

32.5 -3.6 82.5 8.1 *** 65 8.1 

35 -3.0 85 9.1 *** 70 9.1 

37.5 -2.6 87.5 10.2 *** 75 10.2 

40 -2.1 90 11.4 *** 80 11.4 

42.5 -1.5 92.5 12.9 *** 85 12.9 

45 -1.0 95 14.9 *** 90 14.9 

47.5 -0.5 97.5 18.6 *** 95 18.6 

50 0.0   ***   
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Additional information on the model and quality control measures are included as an Appendix 

to this report.  This includes probabilities for individual predictors, model cross validation with 

time periods not included in the model development and an evaluation of the model residuals for 

only the mid-day time periods time periods.  The fact that the predictions are unbiased (Figure 

5), that the predictions are unbiased at all predictions levels (Figure  6) and that the predictions 

are unbiased in the critical mid-day period (see appendix) all indicate that the model is unbiased.  

We now turn our attention to using the model to quantify the impacts from the wildfires. 

Given that the model is unbiased, the best estimate for the MDA8 in the absence of fires 

for June 21, 2015 is obtained from the modeled hourly values.  The modeled hourly values yield 

an estimated MDA8 of 54 ppb, and therefore a contribution from the fires of 23 ppb (77-54 ppb). 

 

6. Applying the EPA guidance to estimate the minimum contribution to the MDA8 

The most likely contribution to the MDA8 from the fires on June 21, 2015 was 23 ppb.  

To estimate the minimum contribution, we have applied the EPA guidance on use of statistical 

models.  This guidance states “The difference between the predicted values and the measured 

values are analyzed, and the 95th percentile of those positive differences (observed O3 is greater 

than predicted) is recorded.   This 95 percent error bound is added to the O3 value predicted by 

the regression equation for the flagged days, and any difference between this sum and the 

observed O3 for the flagged day may be considered an estimate of the O3 contribution from the 

fire…”   Since the 95th percentile of positive values is equivalent to the 97.5th percentile of all 

values (see Table 2) we refer to this error limit as the “97.5 percentile error limit”.   From the 

GAM fits to the hourly data, we find that the mean, standard deviation, 95th and 97.5th percentiles 

are: -0.02, 9.2, 14.9 and 18.6 ppb respectively.  In this next section, we follow the EPA guidance 

procedure precisely and show that the wildfire contribution on June 21, 2015, exceeds this 97.5 

percentile error value.   

Figure 7 shows the observed hourly O3 and the fit O3, along with the 97.5th percentile 

error bounds.  Also shown on the figure are the observed hourly PM2.5 values.  For most of the 

24-hour period, the observed O3 is very well modeled by the GAM fits.  Only during the midday 

period (11 am- 2 pm) do the model values fall outside this 97.5th percentile.   This is the exactly 

the same time when PM is enhanced by smoke.  We followed the EPA guidance to compute the 

impact from the fires by excluding only the contribution to the hourly O3 values that is above the 
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97.5th percentile error boundary.   Figure 8 shows a representation of the procedure.   This results 

in a reduction of the hourly values (11 am-2 pm) by 5, 21, 21 and 10 ppb, respectively.   The 

MDA8 is recalculated using the observed O3 for the remainder of the time period.  The 

calculated MDA8 is 70 ppb.  Thus we conclude that the wildfires contributed 7 ppb to the 

MDA8.   The 7 ppb is a minimum estimate and only considers the contribution above the 97.5th 

percentile error bound. 

 

 

Figure 7. Observed hourly O3 and the GAM fit O3, along with the 97.5th percentile error bounds on 

the GAM fit for June 21, 2015.  Also shown is the hourly PM2.5 observations.   
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Figure 8.  Same as Figure 7, but with the excluded O3 shown by the red vertical lines.  Only the 

upper 97.5th percentile bounds are shown.  Following this procedure yields a contribution of 7 ppb 

to the MDA8 from the wildfire influenced period. 

 

7. Matching day analysis 

A good contrast to this smoke influenced day (June 21, 2015) are the days before and 

after (June 20 and 22nd, 2015), which had very similar meteorology.   All three had relatively 

high daily max temperatures, similar trajectory distances, sea level pressures and previous night 

temperatures.   Figure 9 shows the observed hourly O3 and PM2.5 data, along with the GAM fit 

for O3.  Table 3 compares observed and modeled MDA8s and key meteorological parameters.   

As noted above PM2.5 and O3 are highly correlated on June 21, peaking at noon, whereas on all 

other days, PM is low during the day and high at night.  For June 20 and 22nd, this is understood 

as being caused by nighttime accumulation of PM2.5 in a shallow mixed layer and daytime 

photochemical production of O3, at a time when the boundary layer height is increasing.   For 

June 21st, the enhanced peak in O3 and simultaneous peak in PM2.5 are due to the wildfire 

influence.  Figure 9 further shows that the GAM fits to the observations for June 20 and 21 are 

very good, whereas the observations are much higher than the fit during the daytime on June 21st.  

So, the matching day analysis leads us to conclude that June 21, 2015 was different from the day 

before and the day afterwards in multiple respects.  This includes the timing of the PM2.5 peak 

and the ability of the GAM fits to accurately reproduce the data, despite having similar 
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meteorological conditions.  All of these factors are consistent with O3 production associated with 

the transport of smoke. 

 

 

Figure 9.   Observed O3 and PM2.5 and modeled O3 for June 20-22, 2015.  The modeled MDA8 

values for June 20 and 22 were within 5 ppb, whereas for June 21, the observed MDA8 was 23 ppb 

higher than the modeled. 
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Table 3.   Comparison of observed O3 and PM, modeled fits and meteorological parameters for 

June 20, 21 and 22, 2015. 

 6/20/2015 6/21/2015 6/22/2015 

Observed MDA8 67 77 56 

Modeled MDA8 63 54 61 

Obs - Modeled MDA8 +4 23 -5 

Trajectory quadrant (after 24 hrs) SE SW SE 

Vector averaged wind direction for 

hours 10-17 (deg) 

268 200 129 

Trajectory distance (after 24 hours 

transport,  km) 

388 372 325 

TMAX (F) 103.0 102.0 103.0 

TAVG (F) 88.5 90.2 89.2 

TMIN previous night  (F) 77.0 77.0 75.0 

DPAVG (F) 49.7 44.3 51.8 

SLP AVG (mbar) 1006.4 1006.4 1007.5 

Wind speed between hours 0-17  (kts) 4.0 3.6 3.2 

Time of max PM 7 pm 12 pm (noon) 3 am and 11 pm 

 

8. Conclusion 

 We have evaluated the El Paso UTEP O3 and PM2.5 for June 21, 2015.  Both O3 and 

PM2.5 are elevated in the mid-day (10am-2pm) and in a ratio which is consistent with published 

data on aged wildfire smoke plumes.   The pattern in PM2.5 on June 21, 2015 is significantly 

different from the usual pattern, where PM peaks at night.  The CAMx modeling demonstrates 

transport of smoke from the multiple fires burning in Arizona and New Mexico.  Thus, the 

pattern of a daytime peak in PM2.5, the enhancement ratio of ∆PM2.5/∆O3 and the CAMx 

modeling all support the conclusion that smoke was transported to the UTEP site at mid-day on 

June 21, 2015.   A quantitative assessment of the fire contributions to O3 was made using a 

Generalized Additive Model.  The model was shown to be unbiased at all prediction levels and 

for the daytime maximum.  Using this model and following the EPA guidance, we calculate that 

the fires contributed to be 23 ppb to the MDA8 at the UTEP site for June 21, 2015.  Separately, 

we calculated the minimum contribution of 7 ppb to the MDA8 based on the 97.5th percentile 

using the EPA wildfire guidance method.  Finally a matching day analysis was completed using 

the day before (June 20th) and the day after the smoke event (June 22nd).   These three days had 

very similar meteorology.  The model fits for June 20 and 22 were within 5 ppb, whereas for 

June 21 the model was 23 ppb low.   In addition, June 21 was the only day with a midday peak in 
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PM2.5.    Thus we conclude that the matching day analysis demonstrates an unusual impact on O3 

for June 21, 2015.   Therefore, the preponderance of evidence indicates that an unusual event 

occurred on June 21. Specifically, the available evidence suggests significant wildfire influence 

on the El Paso MDA8, contributing at least 7 ppb and most likely 23 ppb to the observed 

exceedance. 
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Appendix:    

Table A1. PM-O3 Correlation between 10am-5pm (inclusive) on all days in 2010-2015 with 

MDA8>70.   For statistical significance, need R2 =  0.66 or higher.  Only two dates: 6/22/11 

and 6/21/15 have significant correlations and only 6/21/15 has a significant positive 

correlation.  These dates are shown in bold below. 

Date MDA8 (ppb) 

O3-PM2.5 SLOPE  

(ppb per ug/m3) R2 

7/13/10 87 -3.8 0.26 

7/3/13 82 -4.2 0.12 

7/19/10 81 2.7 0.17 

6/17/15 81 3.4 0.20 

6/4/11 78 3.4 0.49 

6/22/11 78 -1.7 0.70 

7/13/12 77 -2.8 0.61 

6/21/15 77 7.1 0.90 

7/12/12 75 2.1 0.57 

5/24/13 75 2.8 0.47 

6/11/13 75 0.0 0.00 

7/15/14 75 -0.1 0.00 

8/20/10 74 -8.0 0.26 

8/4/12 74 5.3 0.30 

8/31/12 74 1.1 0.00 

9/2/12 74 0.8 0.06 

8/10/15 74 2.3 0.11 

8/10/10 73 -3.2 0.25 

4/28/13 73 -0.7 0.06 

8/17/13 73 -2.0 0.29 

8/19/13 73 1.5 0.02 

6/10/14 73 6.5 0.40 

7/15/10 72 -2.0 0.06 

6/28/12 72 -1.8 0.60 

7/14/12 72 4.7 0.52 

6/21/14 72 6.0 0.60 

6/29/15 72 -1.6 0.01 

7/20/11 71 0.7 0.00 

6/29/12 71 -1.3 0.13 

8/12/12 71 0.6 0.05 

8/21/12 71 4.7 0.44 
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Further GAM details and quality control 

The main report describes the basic model development and quality control including: 

1. Model fit and R2; 

2. Overall distribution of model residuals; 

3. Distribution of residuals vs binned model prediction; 

4. Residuals percentile cut-points, including 95th and 97.5th percentiles. 

 

 Here we describe some additional details and quality control tests.    

1. Model validation when individual years were excluded; 

2. Examination of model performance for only the daytime/high O3 period (10am-2pm). 

3. Individual probabilities for each predictor variable. 

4. Examination of probabilities associated with each predictor  

 

One step in model validation is comparison of predictions using data that were not part of the 

original model development.  To do this, we recalculated the GAM predictions while excluding 

one year of data.   The model fits were then used to estimate hourly O3 for the year that was 

excluded.  Shown below are the results for predicted 2015 data, when 2015 data were excluded 

from the original model computation.  The correlation coefficient remains acceptable (R2=0.56), 

but with some deterioration as would be expected.    
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Figure A1:  This shows observed vs model calculated O3 (fit O3) for 2015, when the 2015 data are 

excluded from the original model development.  So this figure includes 1/5th as much data as shown 

in Figure 

 

The next check we conducted was to evaluate any possible model bias for the highest O3 values 

during the daytime.  This is shown in Figure A2.  Here we have plotted the observed vs model 

predicted hourly observations, but only for the hours of 10am-2pm.  As we saw earlier (Figure 

4), the model is biased high at very low concentrations, but is unbiased at high concentrations.  

There are a few points that are significantly off the line, including the mid-day points for June 

21, 2015.  The residuals for this comparison are shown in Figure A3.  The standard deviation of 

these residuals is nearly the same (8.8) as the full dataset (9.2). 
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Figure A2. Observed vs Modeled O3 (ppb) for the hours of 10am-2pm.  The slope is 0.99, intercept 

is 0.7 and the R2 is 0.49. 

 

 

Figure A3. Histogram of residuals for modeled O3 (ppb) for the hours of 10am-2pm.  

 



22 

 

Next we include a summary of the GAM results from R.  This shows the model form and 

equation and the P values for each individual predictor.  Also shown are the standard graphical 

outputs from the GAM “summary”  function.   The last item is a copy of the actual GAM code 

that we developed to run the model with the El Paso hourly O3 and meteorology data. 

 

Summary of model results from GAM function in R: 

> AIC(m1) 

[1] 58800.42 

> summary(m1) 

 

Family: gaussian  

Link function: log  

 

Formula: 

O3 ~ s(V1, bs = "cr", k = 4) + s(V2, bs = "cr", k = k2[1]) +  

    s(V4, bs = "cr", k = k2[4]) + s(V5, bs = "cr", k = k2[4]) +  

    s(V6, bs = "cr", k = k2[4]) + s(V7, bs = "cr", k = k2[4]) +  

    s(V8, bs = "cr", k = k2[4]) + s(V9, bs = "cr", k = k2[4]) +  

    s(V10, bs = "cr", k = k2[4]) + s(V11, bs = "cr", k = k2[4]) +  

    s(V12, bs = "cr", k = k2[4]) + s(V13, bs = "cr", k = k2[4]) +  

    s(V14, bs = "cr", k = k2[4]) + s(V15, bs = "cr", k = k2[4]) +  

    s(V3, bs = "cr", k = k2[4]) + Month + WD1017 + TR16Q 

 

Parametric coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  5.005e+00  1.847e-01  27.106  < 2e-16 *** 

Month       -2.008e-01  2.859e-02  -7.025 2.31e-12 *** 

WD1017       2.970e-04  5.196e-05   5.715 1.13e-08 *** 

TR16QNW     -1.429e-01  1.584e-02  -9.024  < 2e-16 *** 

TR16QSE     -1.466e-01  1.281e-02 -11.439  < 2e-16 *** 

TR16QSW     -1.485e-01  1.531e-02  -9.700  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

         edf Ref.df        F  p-value     

s(V1)  3.000  3.000  100.251  < 2e-16 *** 

s(V2)  8.931  8.997   21.633  < 2e-16 *** 

s(V4)  8.939  8.999 1084.239  < 2e-16 *** 
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s(V5)  8.437  8.901   21.541  < 2e-16 *** 

s(V6)  8.461  8.882   14.497  < 2e-16 *** 

s(V7)  8.204  8.803    6.207 2.77e-08 *** 

s(V8)  8.876  8.989    6.664 9.65e-10 *** 

s(V9)  8.835  8.987   20.665  < 2e-16 *** 

s(V10) 7.862  8.671    7.615 5.72e-11 *** 

s(V11) 8.999  9.000    9.890 3.23e-15 *** 

s(V12) 6.226  7.553    7.134 5.85e-09 *** 

s(V13) 8.939  8.997   12.951  < 2e-16 *** 

s(V14) 8.384  8.856    7.483 6.28e-11 *** 

s(V15) 8.561  8.915   22.055  < 2e-16 *** 

s(V3)  8.628  8.936   20.628  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.639   Deviance explained = 64.5% 

GCV = 87.291  Scale est. = 85.911    n = 8047 

 

 



24 

 

 

GAM code for analysis of El Paso hourly data using R software: 
rm(list = ls(all = TRUE)) 

 library(mgcv) 
  

    # these are the parameters for the spline fit (Knots)  

#Use K=4 for HOURLY--ACTUALLY USING K=10 

k1 = c(10,10,10,10,10,10,10,10,10,10) 

k2 = c(10,10,10,10,10,10,10,10,10,10) 

    ### Next line reads in data file from my computer. 
### You will need to configure the path correctly for your computer. 

dat = read.csv("C:/ElPaso/GAM/ELP_hr_JJ_final4.csv",header=T) 

    #Model below is best for hourly data: 

#For hourly model, I found best fit is with the gaussian family and log link 

#Running this code on 10 months of hourly data, takes about one hour on my laptop. 

    m1 = gam(O3~s(V1,bs="cr",k=4)+s(V2,bs="cr",k=k2[1])+s(V4,bs="cr",k=k2[4])+ 

           s(V5,bs="cr",k=k2[4])+s(V6,bs="cr",k=k2[4])+s(V7,bs="cr",k=k2[4])+ 

           s(V8,bs="cr",k=k2[4])+s(V9,bs="cr",k=k2[4])+s(V10,bs="cr",k=k2[4])+ 

           s(V11,bs="cr",k=k2[4])+s(V12,bs="cr",k=k2[4])+s(V13,bs="cr",k=k2[4])+ 

           s(V14,bs="cr",k=k2[4])+s(V15,bs="cr",k=k2[4])+s(V3,bs="cr",k=k2[4])+ 

           Month+WD1017+TR16Q,family="gaussian"(link="log"), 

           data=dat,na.action=na.exclude,sefit=true) 

    #Basic model checks below 
 AIC(m1) 

   summary(m1) 
  plot(m1) 

   

    #Calculate fit and residuals 
 resm1 = residuals(m1,type="response") 

fitm1 = fitted.values(m1) 
 

    #THE NEXT LINE CAN BE USED TO GET PREDICTIONS FROM INPUT VARIABLES. 

se3=predict.gam(m1,dat, type="response", se.fit=TRUE) 

    #Bind the output and ptint it out. 

datnew = cbind(dat,fitm1,resm1,se3$fit) 

   

### Next line is for my computer 
### You will need to configure the path correctly for your computer. 

write.csv(datnew,"C:/Dans/ElPaso/Results_NEWFILENAME.csv") 
 


